Killer proteins 4 and 6 from the fungal wheat pathogen *Zymoseptoria tritici* are toxic to fungi and structurally related to fungal effector families

Main advances in the study of fungal effector protein structures

Novel effectors from *Zymoseptoria tritici* a fungal pathogen of wheat

Could structural analysis help classify these effectors ?

MAX effectors

Different primary sequences but similar structure (shared fold : <u>MAX effectors</u>)

Max effector (HMM search) 70 60 50 4(**Zt-MAX** potential 30 20 number of 10 ſ J. nacians L. Hicurol L. Hitici -lotoiculare c. hiesheianum C. & Beosportoites TH12 TH16 GN1 (R13 MGG , CO156 JS77 PHIA 8832 M.oryzae and grisae strains Species

One candidate MAX in Zymoseptoria Low sequence similarity Is it really a MAX effector ? 3D structure determination

Structural biology analysis

Both structures of Zt-MAX have an α/β structure with tree stranded β -sheet and two α -helices.

Both structures of Zt-MAX have an α/β structure with tree stranded β -sheet and two α -helices. MAX effectors have a β sandwich structure of six antiparallel β strands.

Zt-MAX is not a MAX effector.

Zt-NIP1

Zt-NIP1 a small secreted protein inducing wheat leaf necrosis expressed during infection: **Candidate effector toxic to wheat**

Necrosis-inducing activity of the ZtNIP1

Structural homologs of Zt-NIP1 and Zt-MAX

UmV-KP4 and UmV-KP6α are fungitoxic proteins of *Ustilago maydis* RNA virus (UmV)

> Zt-NIP1 \rightarrow Zt-KP4-1 Zt-MAX \rightarrow Zt-KP6-1

KP4 and KP6 killer toxins are encoded by different strains of dsRNA virus (UmV) infecting *Ustilago maydis*, a fungal pathogen of maize

These virus encoded proteins are toxic to fungi

- Only non-infected U. maydis strains are sensitive to toxins
- Infected U. maydis are immune to the toxin they produce :

Killer phenotype: infected strains kill non-infected strains

Maize Smut Fungus (Ustilago maydis)

Review

The virally encoded killer proteins from Ustilago maydis

Aron ALLEN^a, Emir ISLAMOVIC^{b,1}, Jagdeep KAUR^a, Scott GOLD^b, Dilip SHAH^a, Thomas J. SMITH^{a,*}

^aDonald Danforth Plant Science Center, 975 North Warson Road, Saint Louis, MO 63132, USA ^bDepartment of Plant Pathology, University of Georgia, Athens, GA 30602, USA Are Zt-KP4-1 and Zt-KP6-1 toxic to fungi ?

Botrytis cinerea growth

Zymoseptoria tritici growth

Zt-KP4-1 is fungitoxic

to both *B. cinerea* and *Z. tritici*

Zt-KP6-1 is **fungitoxic**

to *B. cinerea Z. tritici* is less susceptible (4-fold lower sensitivity than *B. cinerea*)

No toxicity of Zt-KP4 and Zt-KP6-1 to wheat leaves

Seong K, Krasileva KV. Nat Microbiol. 2023, 8(1):174-187. Derbyshire MC, Raffaele S. Nat Commun. 2023, 14(1):5244.

PCA analysis using the structural distances between KP4 like proteins (Z-score DALI)

9 Zt-KP4 like proteins in Zymoseptoria

Zt-KP4-1, -2, -3 are recent paralogs

PCA analysis using the structural distances between KP6 like proteins (Z-score DALI)

7 Zt-KP6 like proteins in Zymoseptoria

Zt-KP6-1, -2 are recent paralogs

Conclusions

Structural similarities to UmV Killer toxins suggested that these effectors were fungitoxic

This hypothesis was tested by *in vitro growth* assays : Zt-KP4 and Zt-KP6-1 have antifungal activities

Bioinformatics analysis, including Foldseek and HMM searches showed that Zt-KP4 and Zt-KP6 like proteins are widespread in fungi

Pespectives

Zt-KP4 and Zt-KP6-1 have antifungal activities Zt-KP4-1 and Zt-KP6-1 related proteins are widespread in fungi

What are the antifungal activities of fungal effectors structurally related to Zt-KP4-1 and Zt-KP6-1?

Pespectives

Zt-KP4 and Zt-KP6-1 have antifungal activities Zt-KP4-1 and Zt-KP6-1 related proteins are widespread in fungi

What are the antifungal activities of fungal effectors structurally related to Zt-KP4-1 and Zt-KP6-1?

Are they other fungal effectors with antimicrobial activities ? YES: an increasing number

ACKNOWLEDGEMENTS

CBS Montpellier

Karine de Guillem André Padilla Mounia Lahfa Léa Mammri Philippe Barthe Christian Roumestand Jérôme Gracy François Hoh

UMR PHIM Montpellier

Thomas Kroj Stella Césari

INRAE BIOGER Saclay

Marc-Henri Lebrun

Yohann Petit Nicolas Lapalu Justine Rouffet

What are the possible roles of Zt-KP4 and Zt-KP6-1 in *Z. tritici* life cycle ?

Zt-KP6-1 and 2 are mainly expressed during the switch to necrotrophy during fungal colonisation of leaves

Zt-KP4 is mainly expressed during the switch to necrotrophy during fungal colonisation of leaves

Same pattern as Zt-KP6-1 (20-fold higher)

Elimination of other fungi inside the leaves or on the leaf surface ?